基于符號的歸納機器學習
基于符號的歸納機器學習
機器學習(Machine Learning)是研究計算機怎樣模擬或實現人類的學習行為,以獲取新的知識或技能,重新組織已有的知識結構使之不斷改善自身的性能。它是人工智能的核心,是使計算機具有智能的根本途徑,其應用遍及人工智能的各個領域,它主要使用歸納、綜合而不是演繹。
學習能力是智能行為的一個非常重要的特征,但至今對學習的機理尚不清楚。人們曾對機器學習給出各種定義。H.A.Simon認為,學習是系統所作的適應性變化,使得系統在下一次完成同樣或類似的任務時更為有效。R.s.Michalski認為,學習是構造或修改對于所經歷事物的表示。從事專家系統研制的人們則認為學習是知識的獲取。這些觀點各有側重,第一種觀點強調學習的外部行為效果,第二種則強調學習的內部過程,而第三種主要是從知識工程的實用性角度出發的。
機器學習在人工智能的研究中具有十分重要的地位。一個不具有學習能力的智能系統難以稱得上是一個真正的智能系統,但是以往的智能系統都普遍缺少學習的能力。例如,它們遇到錯誤時不能自我校正;不會通過經驗改善自身的性能;不會自動獲取和發現所需要的知識。它們的推理僅限于演繹而缺少歸納,因此至多只能夠證明已存在事實、定理,而不能發現新的定理、定律和規則等。隨著人工智能的深入發展,這些局限性表現得愈加突出。正是在這種情形下,機器學習逐漸成為人工智能研究的核心之一。它的應用已遍及人工智能的各個分支,如專家系統、自動推理、自然語言理解、模式識別、計算機視覺、智能機器人等領域。其中尤其典型的是專家系統中的知識獲取瓶頸問題,人們一直在努力試圖采用機器學習的方法加以克服。
機器學習的研究是根據生理學、認知科學等對人類學習機理的了解,建立人類學習過程的計算模型或認識模型,發展各種學習理論和學習方法,研究通用的學習算法并進行理論上的分析,建立面向任務的具有特定應用的學習系統。這些研究目標相互影響相互促進。
歸納學習(Learning from induction)。歸納學習是由環境提供某概念的一些實例或反例,讓機械通過歸納推理得出該概念的一般描述。這種學習的推理工作量遠多于示教學習和演繹學習,因為環境并不提供一般性概念描述(如公理)。從某種程度上說,歸納學習的推理量也比類比學習大,因為沒有一個類似的概念可以作為"源概念"加以取用。歸納學習是最基本的,發展也較為成熟的學習方法,在人工智能領域中已經得到廣泛的研究和應用。
(百度百科--詞條“機器學習”)
基于符號的歸納學習就是通過對環境輸入的符號信息的內容組合以及語法進行分析歸納,總結出相對于數據庫中原有數據的新的規則,并存入數據庫中,將來對同種信息的輸入就會有所反應。
閱讀(67)|評論(0)